A Fast, Space-Efficient Algorithm for the Approximation of Images by an Optimal Sum of Gaussians
نویسندگان
چکیده
Gaussian decomposition of images leads to many promising applications in computer graphics. Gaussian representations can be used for image smoothing, motion analysis, and feature selection for image recognition. Furthermore, image construction from a Gaussian representation is fast, since the Gaussians only need to be added together. The most optimal algorithms [3, 6, 7] minimize the number of Gaussians needed for decomposition, but they involve nonlinear least-squares approximations, e.g. the use of the Marquardt algorithm [10]. This presents a problem, since, in the Marquardt algorithm, enormous amounts of computations are required and the resulting matrices use a lot of space. In this work, a method is offered, which we call the Quickstep method, that substantially reduces the number of computations and the amount of space used. Unlike the Marquardt algorithm, each iteration has linear time complexity in the number of variables and no Jacobian or Hessian matrices are formed. Yet, Quickstep produces optimal results, similar to those produced by the Marquardt algorithm.
منابع مشابه
Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملAN EFFICIENT HYBRID ALGORITHM BASED ON PARTICLE SWARM AND SIMULATED ANNEALING FOR OPTIMAL DESIGN OF SPACE TRUSSES
In this paper, an efficient optimization algorithm is proposed based on Particle Swarm Optimization (PSO) and Simulated Annealing (SA) to optimize truss structures. The proposed algorithm utilizes the PSO for finding high fitness regions in the search space and the SA is used to perform further investigation in these regions. This strategy helps to use of information obtained by swarm in an opt...
متن کاملAn Optimal Algorithm for the δ-ziti Method to Solve Some Mathematical Problems
The numerical approximation methods of the differential problems solution are numerous and various. Their classifications are based on several criteria: Consistency, precision, stability, convergence, dispersion, diffusion, speed and many others. For this reason a great interest must be given to the construction and the study of the associated algorithm: indeed the algorithm must be simple, rob...
متن کاملgpALIGNER: A Fast Algorithm for Global Pairwise Alignment of DNA Sequences
Bioinformatics, through the sequencing of the full genomes for many species, is increasingly relying on efficient global alignment tools exhibiting both high sensitivity and specificity. Many computational algorithms have been applied for solving the sequence alignment problem. Dynamic programming, statistical methods, approximation and heuristic algorithms are the most common methods appli...
متن کاملEfficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کامل